Near-Unity Mass Accommodation Coefficient of Organic Molecules of Varying Structure

نویسندگان

  • Jan Julin
  • Paul M. Winkler
  • Neil M. Donahue
  • Paul E. Wagner
  • Ilona Riipinen
چکیده

Atmospheric aerosol particles have a significant effect on global climate, air quality, and consequently human health. Condensation of organic vapors is a key process in the growth of nanometer-sized particles to climate relevant sizes. This growth is very sensitive to the mass accommodation coefficient α, a quantity describing the vapor uptake ability of the particles, but knowledge on α of atmospheric organics is lacking. In this work, we have determined α for four organic molecules with diverse structural properties: adipic acid, succinic acid, naphthalene, and nonane. The coefficients are studied using molecular dynamics simulations, complemented with expansion chamber measurements. Our results are consistent with α = 1 (indicating nearly perfect accommodation), regardless of the molecular structural properties, the phase state of the bulk condensed phase, or surface curvature. The results highlight the need for experimental techniques capable of resolving the internal structure of nanoparticles to better constrain the accommodation of atmospheric organics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A molecular dynamics study of water mass accommodation on condensed phase water coated by fatty acid monolayers

[1] As the water uptake by particles and clouds influences the radiative balance of the Earth, it is desirable to understand the mechanisms and parameters, which regulate water uptake in these colloidal particles. In this work, molecular dynamics simulations were used to simulate scattering or accommodation of water vapor molecules impinging on a slab of water and slabs of water coated by monom...

متن کامل

Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models

The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are comp...

متن کامل

Particle growth and inferred mass accommodation coefficients for nitrate uptake on sulfate particles in an urban port region

Particles produced by ships and other port-related emission sources near coastal communities contribute significantly to human health and climate forcing. Heterogeneous reactions on particle surfaces including uptake of inorganic acids can alter the chemical and physical properties of aerosols and thus their effects on health and climate. Particle sulfate and ammonium content are thought to con...

متن کامل

Effective heights and tangential momentum accommodation coefficients of gaseous slip flows in deep reactive ion etching rectangular microchannels

The behavior of a rarefied, compressible flow in long, constant cross section channels provides an opportunity to study complex gas dynamics in a simple geometry that allows analytical solutions. The problem of a rarefied, compressible flow in near unity aspect ratio rectangular cross section channels has been all but ignored despite it being a common flow geometry. We present analytical expres...

متن کامل

Commentary on cloud modelling and the mass accommodation coefficient of water

The mass accommodation coefficient of water is a quantity for which different experimental techniques have yielded conflicting values in the range 0.04–1. From the viewpoint of cloud modelling, this is an unfortunate situation, since the value of the mass accommodation coefficient affects the model results, e.g. the number concentration of activated cloud droplets. In this commentary we note th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2014